
Ricardo Souza Vasconcellos Universidade Estadual de Maringá - PR

Nutracêuticos que auxiliam na saúde do animal senil

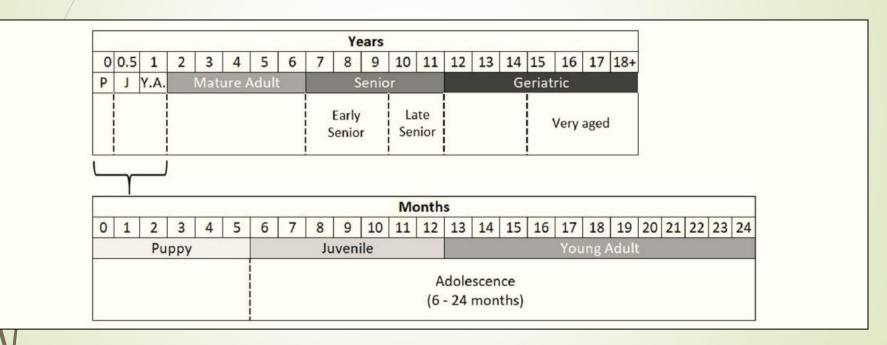
quais realmente funcionam e quando iniciar a utilização?

ENVELHECIMENTO

O envelhecimento é um processo biológico complexo, pouco compreendido, caracterizado por uma alteração progressiva e irreversível dos tecidos e células, levando à diminuição da vitalidade, das reservas orgânicas e do funcionamento dos órgãos.

DEFINIÇÕES

Os termos "sênior" ou "idoso" referem-se à funcionalidade do animal


Os termos "geriátrico" ou "velho" referem-se apenas à idade cronológica do paciente

IDADE DE ANIMAIS GERIÁTRICOS

Espécie/Peso	Geriatria
Cães	
Raças pequenas (2 - 10kg)	11,5 anos
Raças médias (10 - 22kg)	10 anos
Røças grandes (22 - 40kg)	9 anos
Raças gigantes (> 40kg)	7,5 anos
Gatos	12 anos

Adaptado de Goldston (1995) e NRC (2006)

CLASSIFICAÇÃO BASEADA EM ASPECTOS COMPORTAMENTAIS

QUANDO MUDAR?

Verificar quando as alterações aparecem com maior frequência (Groves, 2019)

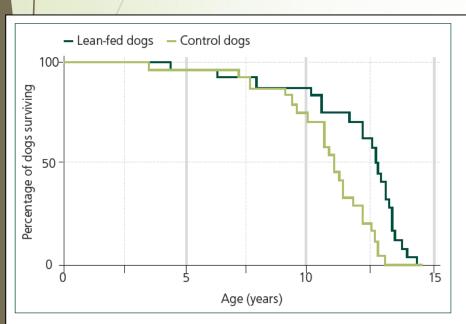
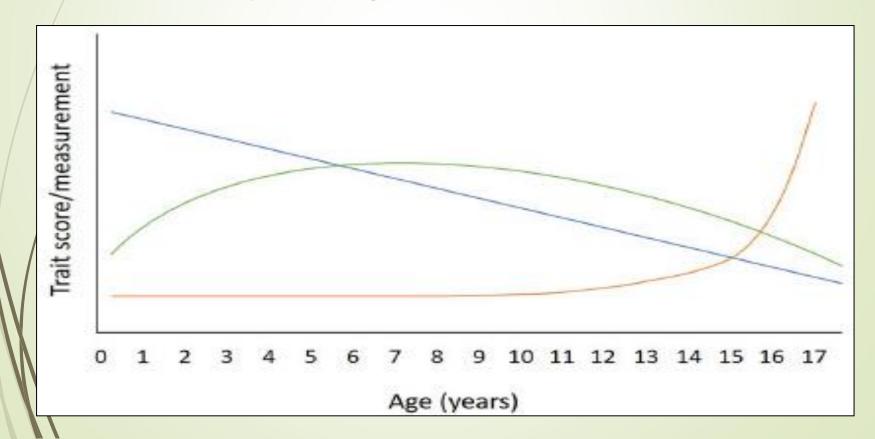


Figure 1. Survival curves for 24 Labradors with average body condition score (BCS) of 4.6 ('restricted feeding') and a second group of 24 Labradors with average BCS 6.7 ('controlled feeding'); BCS was measured from 6–12 years of age. Adapted from Kealy et al (2002), with permission.

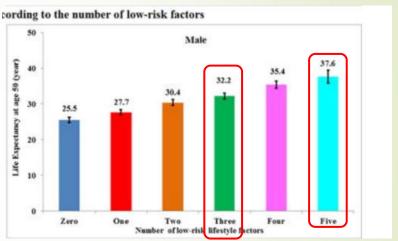

Table 1. Table summarising percentage of obesity and underweight cats by age

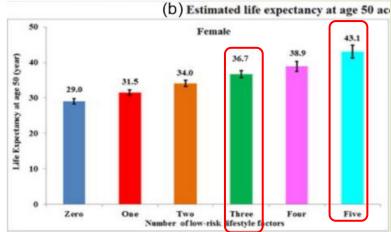
Age (years)	Body weight (kg)	Percentage obese	Percentage underweight
1-7	3.7 ± 0.8	<1%	<1%
7-12	4.4 ± 1.7	28%	<1%
Over 12	2.9 ± 1.0	<1%	23%

Adapted from Patil and Cupp (2010), with permission.

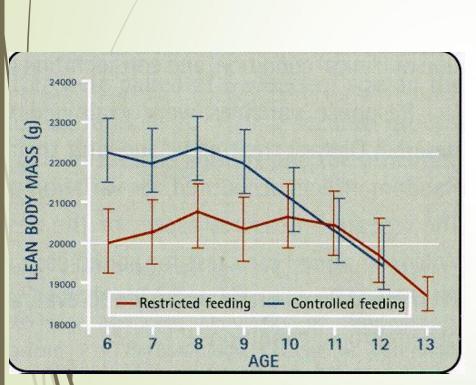
QUANDO MUDAR?

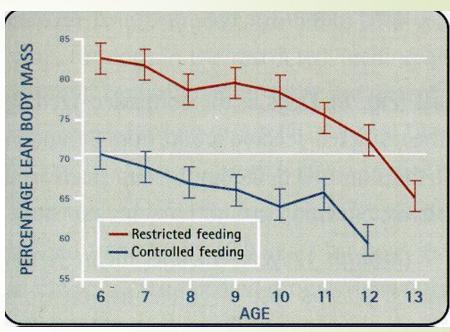
 Dificuldade em definir quando em função das diferentes modificações ao longo da vida (Harvey, 2021)




QUANDO MUDAR?

Aditivo de fatores na expectativa de vida em humanos (expectativa de vida acima dos 50 anos)

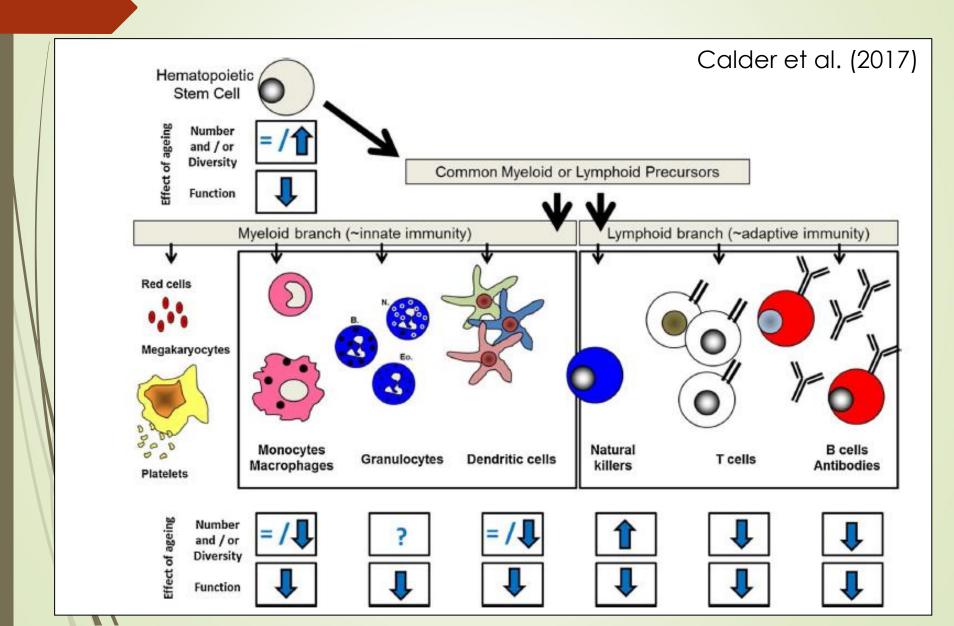

- Não-fumante
- Atividade física
- Alimentação saudável
- Baixa ingestão de álcool
- **\\Peso** ideal


HU, (1 Intern Med. 2024; 295:508-31)

SARCOPENIA E MUDANÇAS DIETETICAS

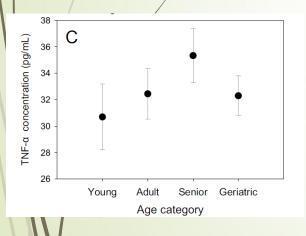
Queda da massa corporal magra precede o início de doenças (causa ou consequência?)

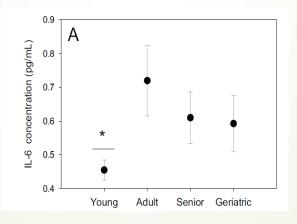
PRINCIPAIS ALTERAÇÕES FISIOLÓGICAS

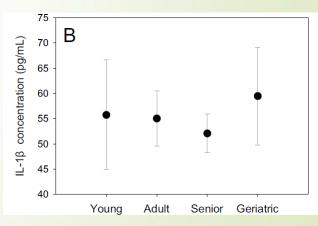

- Perda dos sentidos especiais
- Modificação nas necessidades energéticas
- Perda de massa magra corporal
- Redução na capacidade adaptativa dos sistemas
- Redução na cognição
- Fragilidade imunológica (imunosenescência)

OBJETIVO NA PREVENÇÃO DOS EFEITOS DO ENVELHECIMENTO

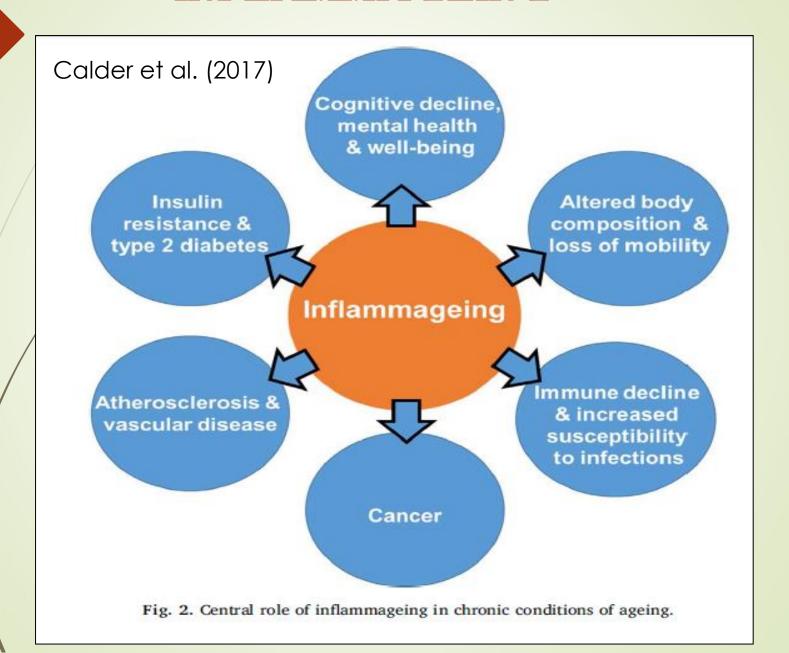
- Imunosenescencia
- Inflømmageing
- Sarcopenia
- Disfunção cognitiva

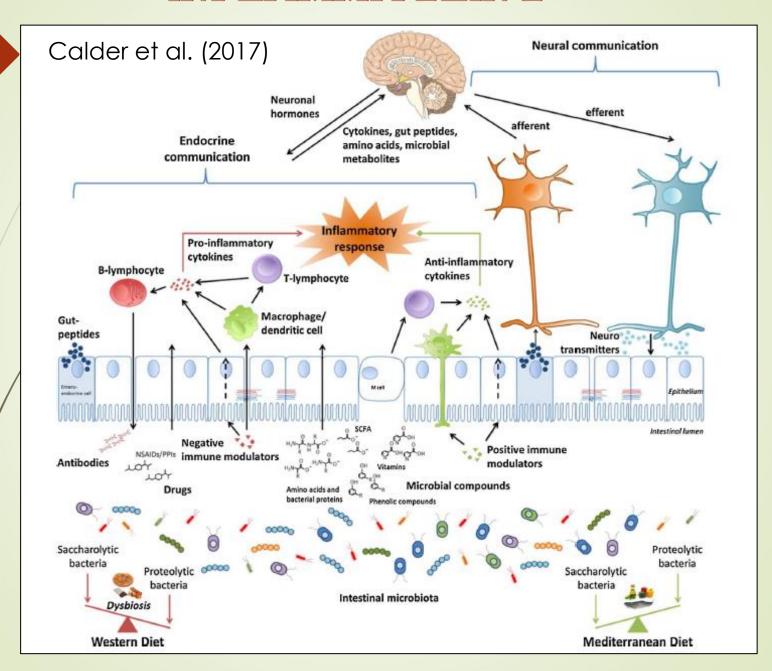



IMUNOSENESCENCIA



MARCADORES DO INFLAMMAGEING EM CÃES


Jiménez (2023) – 180 cães de diferentes portes e idades



INFLAMMA GEING

INFLAMMAGEING

SARCOPENIA

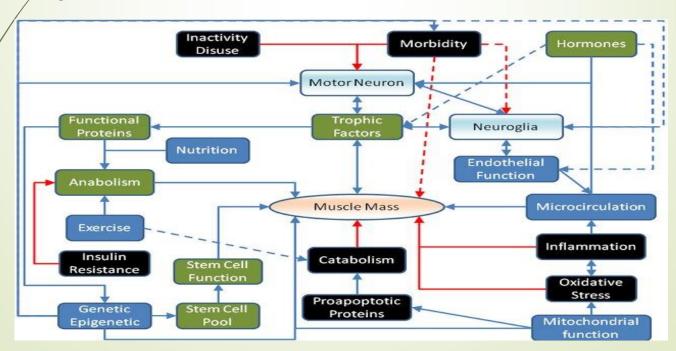
Interação complexa de:

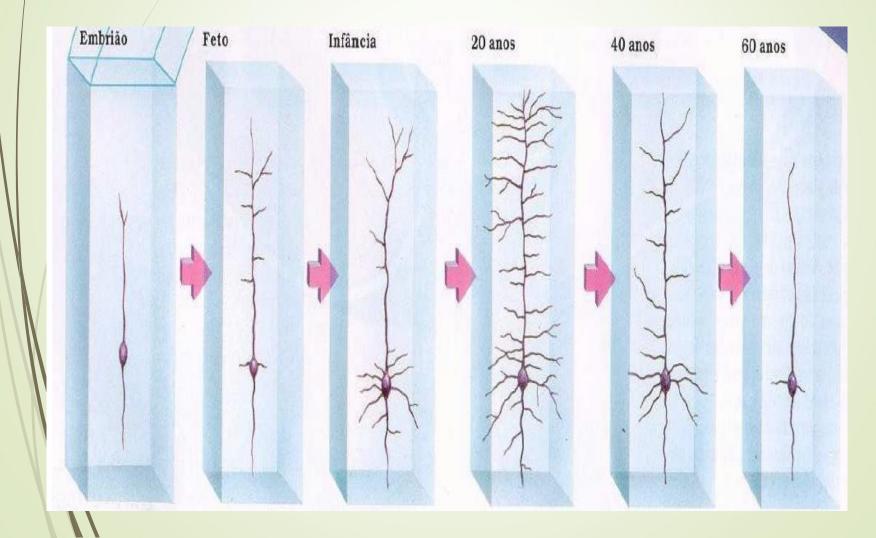
Distúrbios da inervação

Diminuição de hormônios

Aumento de mediadores inflamatórios Alterações da ingestão protéico-energética que ocorrem durante o envelhecimento

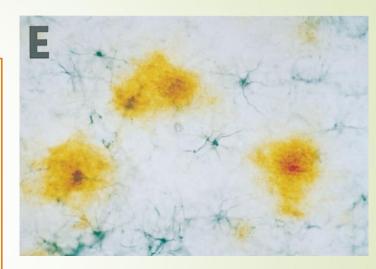
SARCOPENIA

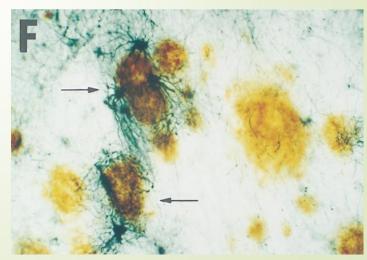

Perda acentuada de Massa Magra corporal


SARCOPENIA

- Características em cães e gatos Laflamme (2018)
 - Cerca 30% de perda de massa muscular
 - o Idade mais observada: 10-15 anos
 - Restrição calórica mantém maior MM

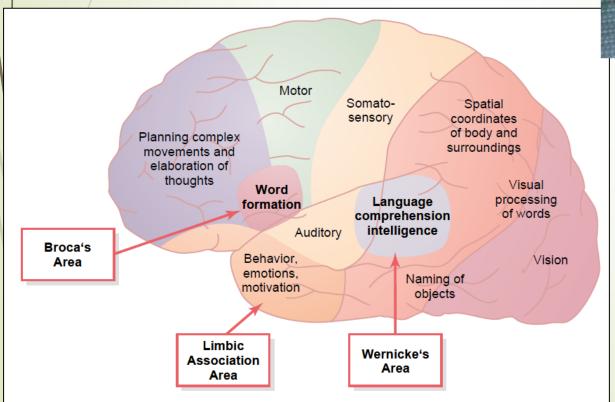
COGNIÇÃO

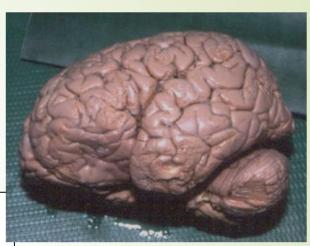

Envelhecimento do SNC



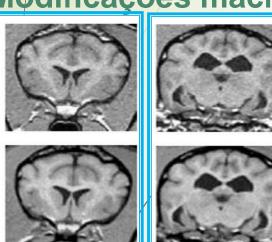
DISFUNÇÃO COGNITIVA

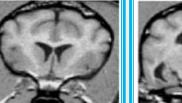
Modificações microscópicas


- Deposição de β-amilóide
- Redução na síntese/degradação de NT
- Degeneração da bainha de mielina
- Redução do número de mitocôndrias
- Redução das defesas antioxidantes
- Redução na atividade da melatonina
- Aumento no dano do DNA



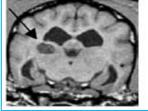
ALTERAÇÕES NO SNC COM A IDADE

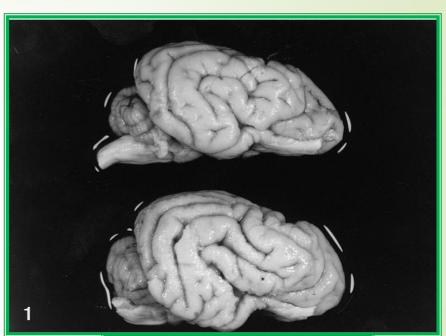

Envelhecimento do SNC

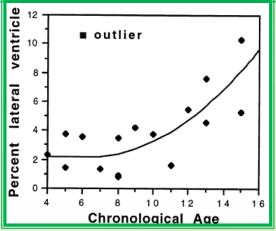

ALTERAÇÕES NO SNC

Modificações macroscópicas

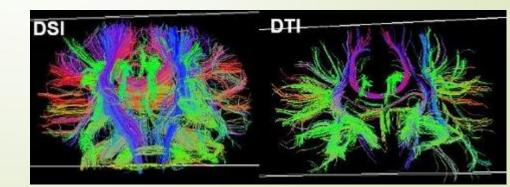
1999




2001



2002

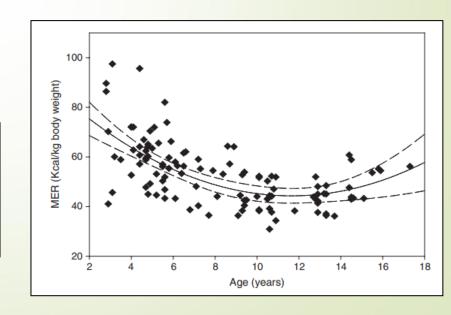

Su et al. (1999; 2005)

ALTERAÇÕES NO SNC

- > Atrofia cortical
- > Degeneração mielínica da substância branca
- > Acúmulo de proteínas degradadas
- > Dano ao DNA
- > Redução dos mecanismos endógenos de proteção Aox

ESTRATÉGIAS NUTRICIONAIS

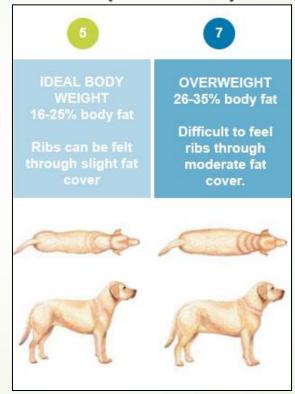
- Restrição calórica
- Proteína e aminoácidos
- Ácidos graxos ômega-3
- O Àcidos graxos de cadeia média
- Antioxidantes
- Prebióticos



NECESSIDADE ENERGÉTICA

Recomendações práticas para a NEM de cães de idades diferentes"

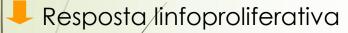
Idade (anos)	kcal EM/kg ^{o,75/dia}	kJ EM/kg ^{0,75/dia}
1 – 2	130 (125-140)	550 (523-585)
3 – 7	110 (95-130)	460 (398-545)
> 7 (cães senior)	95 (80-120)	398 (335-500)


Sexo - Atividade	kcal EM/kg ^{0,67/dia}	kcal EM/kg ^{PC/dia} (gato de 4 kg)
Gatos castrados e/ou que vivem em ambientes internos	52-75	35-45
Gatos ativos	100	60-65

RESTRIÇÃO DIETÉTICA EM CÃES

Estudo de longevidade (Purina)

Expectativa média de vida Controle 11,2 anos RD 13 anos (p<0,01)



Escore condição corporal (média dos 6 aos 12 anos) Controle 6,7 RD 4,6 (p<0,05)

RESTRIÇÃO DIETÉTICA EM CÃES

Imunosenescência

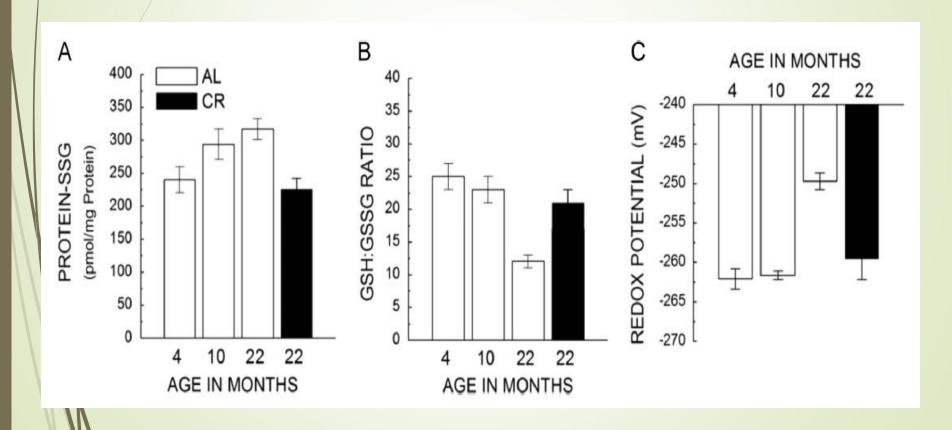
Retardo no declínio imunológico consequente ao envelhecimento

CD4

%Inf. B

7% linf. T

CD8

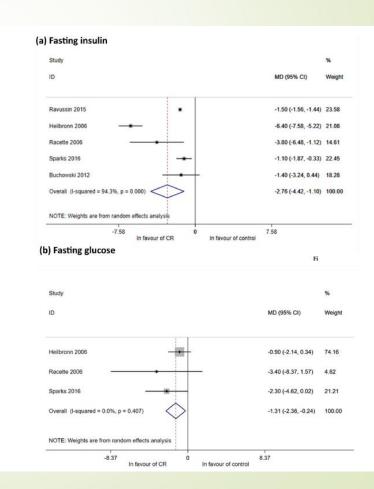

Poder de fagocitose

Foram aliviados com a restrição dietética

Justifica menor morbidade e maior longevidade verificados

RESTRIÇÃO CALÓRICA E LONGEVIDADE

Efeitos oxidativos em ratos alimentados AL ou CR.



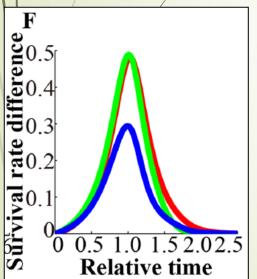
METANÁLISES - HUMANOS

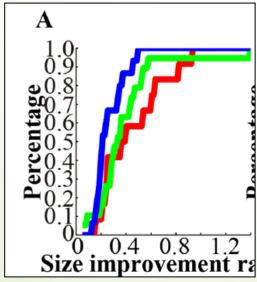
Restrição calórica (Caristia et al., 2020)

Características

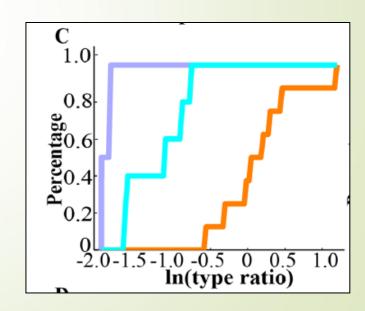
- 29 estudos
- Espécie: humanos
- n = 334 indivíduos
- Tratamento: Restrição calórica
- Conclusão

METANÁLISES - HUMANOS


SCIENTIFIC REPORTS


Received: 5 January 2018 Accepted: 22 March 2018 Published online: 10 April 2018

OPEN Calorie restriction is the most reasonable anti-ageing intervention: a meta-analysis of survival curves


> Yaru Liang¹, Chang Liu², Maoyang Lu¹, Qiongye Dong², Zimu Wang³, Zhuoran Wang¹, Wenxiang Xiong¹, Nannan Zhang¹, Jiawei Zhou¹, Qingfei Liu¹, Xiaowo Wang² & Zhao Wang¹

•Antioxidant •Hypoglycaemic agent •Gastrointestinal drug •Antiepiletic •Others

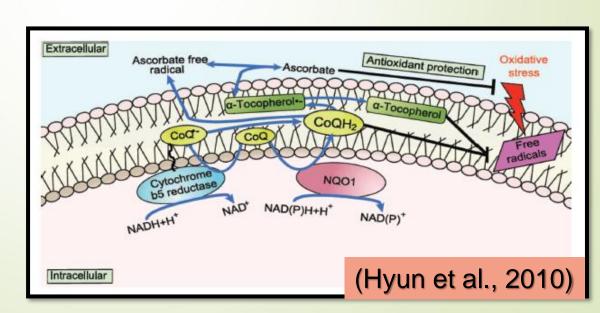
RESTRIÇÃO DE METIONINA

- Kitada et al. (2021) benefícios da restrição de MET
 - Indução da autofagia celular
 - Diminuição na formação de ROS
 - Aumento na formação de H₂S

nature communications

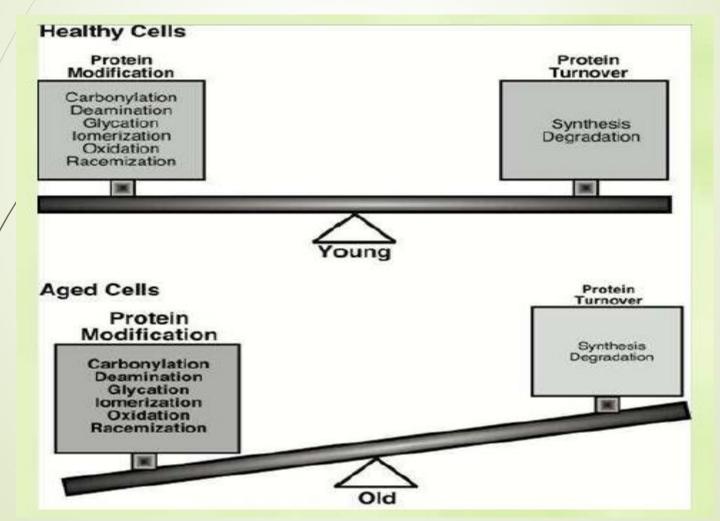
Article

Early-adult methionine restriction reduces methionine sulfoxide and extends lifespan in *Drosophila*


Restrição de **10%** na MET produz efeitos benéficos

Received: 15 April 2022

Hina Kosakamoto ^{1,2,5}, Fumiaki Obata ^{1,2,3,5} ✓, Junpei Kuraishi¹, Hide Aikawa¹, Rina Okada², Joshua N. Johnstone © ⁴, Taro Onuma^{1,2}, Matthew D. W. Piper © ⁴ & Accepted: 10 November 2023


Published online: 05 December 2023

- Moléculas antioxidantes;
- Compartimentalização;
- Sistema enzimático;
 - Superóxido dismutase (SOD) mitocôndria (Mn) e citoplasmática (Cu/Zn)
 - Catalase (CAT)
 - Glutationa peroxidase

STRESS OXIDATIVO

Caracterizado por um acúmulo de compostos tóxicos nas células.

REVIEW

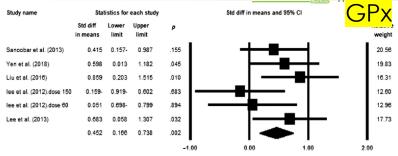
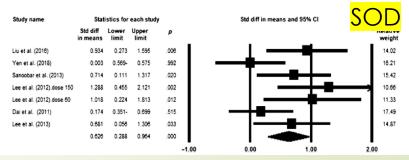
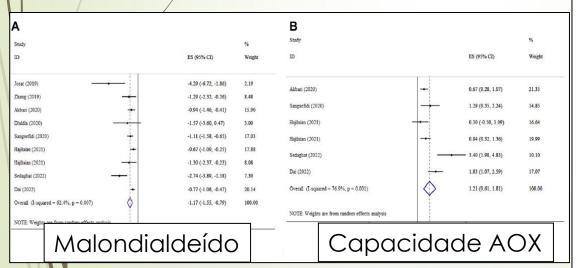
Food Science & Nutrition WILEY

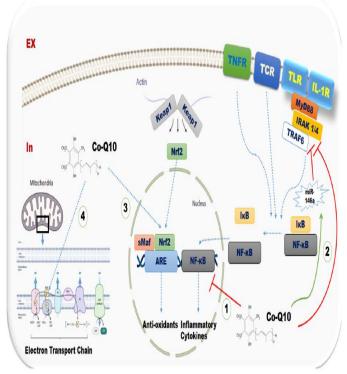
The effect of coenzyme Q10 supplementation on oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials

Zohreh Sadat Sangsefidi^{1,2} | Fatemeh Yaghoubi³ | Salimeh Hajiahmadi^{1,2}

tudy name Statistics for each study			Std diff in means and 95% CI	1 / -		
	Std diff in means	Lower limit	Upper limit	P		Re
Abbasalizad Farhangi et al. (2014)	0.260-	0.875-	0.355	.407	— = ⊢	- 1
Abdollahzad et al. (2015)	0.060	0.531-	0.651	.842	-# - ∣	
Sanoobar et al. (2013)	0.273-	0.860-	0.314	.382	≣ -	
Zhang et al. (2017)	0.571	0.173	0.969	.005	-= -	
Raygan et al. (2016)	1.162	0.615	1.709	.000	-8-	
Akbari Fakhrabadi et al. (2014)	1.302	0.754	1.850	.000		
Zarei et al. (2018)	3.600	2.830	4.369	.000		
Fallah et al. (2019)	4.568	3.607	5.529	.000		\rightarrow
	1.299	0.351	2.247	.007		- 1

Study name	Stat	tistics for	each stu	dy	-2 00	Std diff in means and 95% CI	2 00	4 00
	Std diff in means	Lower limit	Upper limit	p-Value				Relation
Abbasalizad Farhangi et al. (2014)	1.458-	2.123-	0.793-	.000	ı ++	-	- 1	I ML
Abdollahzad et al. (2015)	0.803-	1.417-	0.188-	.010				1
Sanoobar et al. (2013)	1.447-	2.103-	0.790-	.000	I H	-		1 .
Raygan et al. (2016)	0.380-	0.890-	0.131	.145		-8+		
Gholnari et al. (2017)	2.485-	3.223-	1.747-	.000	──			
iu et al. (2016)	0.543-	1.183-	0.096	.096				1
Sholami et al. (2018)	2.095-	2.686-	1.503-	.000	-			1
Lee et al. (2012).dose 150	0.647-	1.426-	0.131	.103		─■ →		1 .
ee et al. (2012).dose 60	0.556-	1.319-	0.206	.153				1
Moazen et al. (2015)	0.615-	1.171-	-0.059	.030				1
ing et al. (2000)	2.343-	3.454-	1.231-	.000		_		
Singh et al. (2003).Hemodialysis	2.214-	2.957-	1.471-	.000		•		1 ,
Singh et al. (2003).No dialysis	0.262-	0.808-	0.284	.347				(
Kailkonen et al. (1997).granul COQ10	0.212	0.409-	0.834	.504		-		1 .
Caildonen et al. [1997].oil based COQ10	0.189	0.432-	0.810	.551				1
Fallah et al. [2019]	2.840-	3.557-	2.122-	.000				
100 - 100 -	1.117-	1.582-	0.651-	.000				


FIGURE 4 Forest plot illustrates standardized mean difference (represented by the black square) and 95% confidence interval (CI) (represented by horizontal line) for concentration of glutathione peroxidase (GPV) and coenzyme Q10 (CoQ10). Weights are from random effects analysis. The area of the black square is proportional to the specific study weight to the overall meta-analysis. The center of the diamond displays the pool standardized mean differences, and its width shows the pooled 95% CI. Std diff, standard difference

Varnousfaderani et al. (2023) – CoQ-10 e

marcadores inflamatórios e oxidativos

Anthoni et al. (2021) – ácido alfa-lipóico

(cães 2.7-4.94 mg/kgPV)

Species	LD_{50}	Maximum Tolerated Dose (If Known)	NOAEL* (If Known)
Rat	>2000 mg/kg bwt	-	60 mg/kg bwt
Mouse	500 mg/kg bwt	-	-
Dog	400–500 mg/kg bwt	126 mg/kg bwt	-
Cat	30 mg/kg bwt	13 mg/kg bwt	-

Species	Benefits	Reference(s)
Rat	enhances glucose metabolism	[71]
Rat	improves insulin resistance	[72]
Mice	protects retina in disease states	[73–75]
Rat	reduces blood pressure	[76]
Rat	functions as a vasorelaxant	[77]
Rat, Mice	reduces oxidative stress	[78-85]
Rat, Mice	reduces inflammation	[82,83,86–90]
Mice	improves memory	[89]
Rat, Mice	protects against organ damage	[91–108]
Mice, Rat, Dog	improves neuro-cognitive recognition	[82,89,109–112]
Poultry	improves oxidative stability and meat quality	[113–123]
Hainan Goats	enhances meat quality and tenderness	[126]
Horses	reduces oxidative stress	[127,128]
Dog	improves antioxidant capacity	[129,130]

NUTRIENTES NA PREVENÇÃO DAS ALTERAÇÕES COGNITIVAS

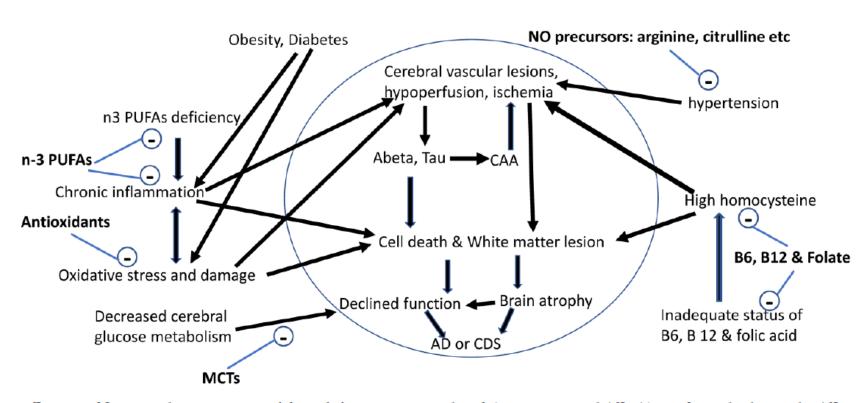
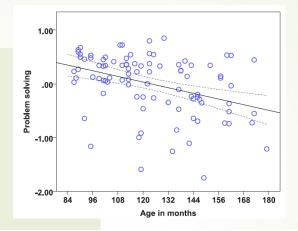


Figure 1. Nutritional management of the risk factors associated with brain aging and AD. Abeta: β-amyloid peptide; AD: Alzheimer's disease; CAA: cerebral amyloid angiopathy; CDS: cognitive dysfunction syndrome; n-3 PUFAs: omega-3 polyunsaturated fatty acids; NO: nitric oxide; Tau: abnormal hyperphosphorylation of tau.


COGNIÇÃO EM CÃES

Suplementação nutraceuticos (Chapagain et

al., 2020)

Características

- 119 cães, 9.1 anos
- Espécie: cães
- Duração 1 ano
- Conclusão: sem efeito

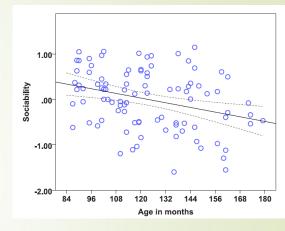
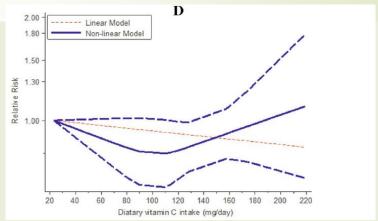
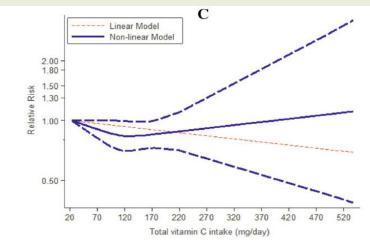


Table 1. Composition of test and control diets.


	Test (enriched diet)	Control
Moisture (%)	9.5	9.5
Crude protein (%)	25.1	25.3
Crude fat (%)	13.4	14.0
Crude fibre (%)	1.6	1.7
Ash (%)	5.1	4.3
Tryptophane (%)	0.45	0.24
TRP/LNAA* ratio	0.067	0.036
DHA (%)	0.17	0
Phosphatidylserine (ppm)	328	0
Vitamin E (ppm)	839	499
Vitamin C (ppm)	559	0
Green tea polyphenols (ppm)	425	0
ME NRC 2006 (kcal/kg)	3826	3884


METANÁLISES - HUMANOS

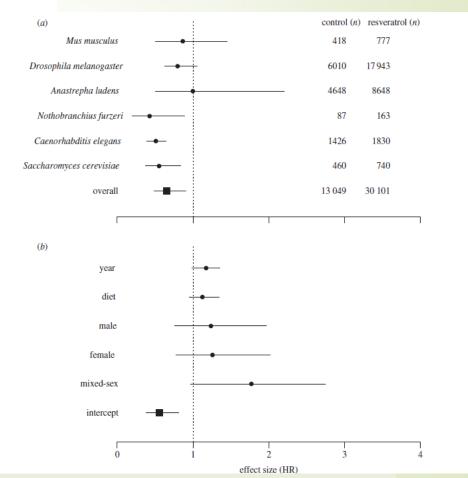
Antioxidantes e demência (Zhou et al., 2023)

Características

- 73 estudos
- Espécie: humanos
- n = 28.257 indivíduos
- AOX (vit. C e E) e demência ou AD

Conclusão: Supl. Vitamina C a cada 20mg/kg reduz RR em 2% para AD

METANÁLISES - HUMANOS

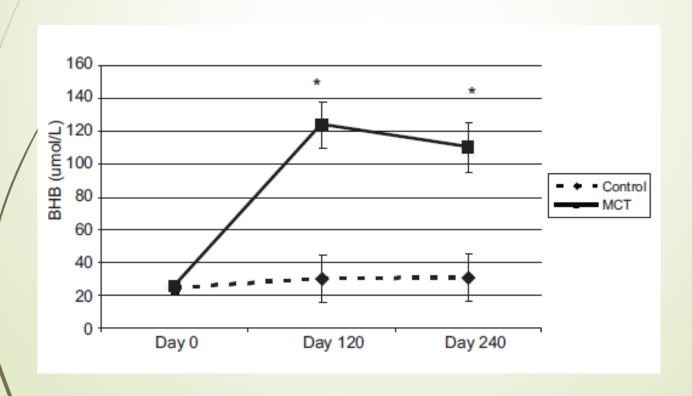


Características

- 19 estudos
- Espécie: várias espécies

and Shinichi Nakagawa

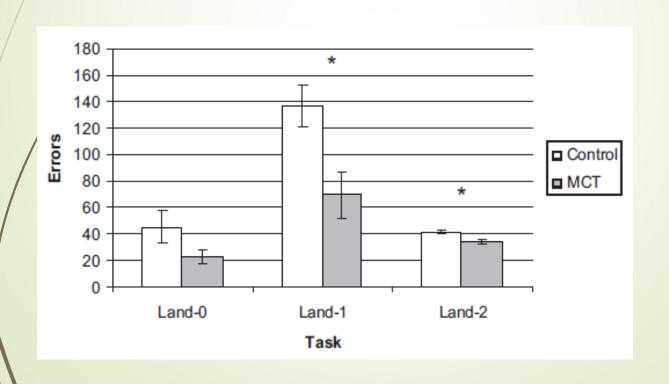
- n = sem informações
- Resveratrol e longevidade



Conclusão: resultados falham em mostrar claim 'life extension'

TRIGLICERÍDEOS DE CADEIA MÉDIA

Suplementação 2g/kg/dia de ácido caprílico


Betahidroxibutirato (β-HB) sérico

TRIGLICERÍDEOS DE CADEIA MÉDIA

Suplementação 2g/kg/dia de ácido caprílico

Número de erros nas diferentes tarefas

DOS&GENS DE ANTIOXIDANTES

Doses de antioxidantes utilizadas experimentalmente (mg/kg na MS)

Antioxidante	Cães	Gatos	Autor
S-adenosil metionina*	20	20	Maureen, 2007
N-acetilcisteína	50	50 50 Maur	
Vitamina E	1080	-	Milgram et al., 2002
Vitamina C	80	-	Milgram et al., 2002
Coenzima Q-10*	2	2	Maureen, 2007
Ácido alfa-lipóico	180	-	Milgram et al., 2002
Beta-caroteno*	3-6	-	Chew et al., 2000
Ficocianinas	0,2%	-	Vasconcellos et al., 2011
Luteína*	2	2	Kim et al., 2000

^{*} Dose expressa por kg de peso corporal

SARCOPENIA E INGESTÃO PROTÉICA

1. Diminuição das reservas protéicas

2. WANNEMACHER; McCOY (1966) demonstraram

para equilíbrio nitrogenado

→ Jovens 12,4%

→ Idosos 18,8%

3. Necessidade aumenta na doença

DIGESTIBILIDADE DA PROTEÍNA

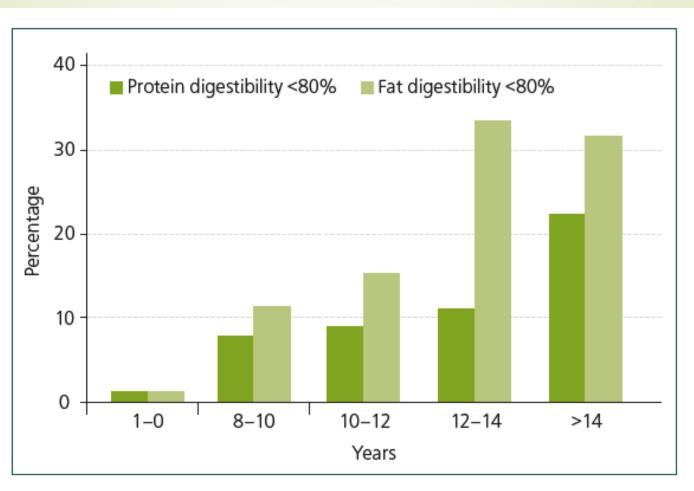


Figure 7. Percentage of cats with low protein and/or digestibility (below 80%), by age. Data from Williams (2018), with permission.

RECOMENDAÇÕES FEDIAF GATOS

		Mínimo recomendado				
Nutriente	UNID.	Adulto - consid	Crescimento e			
		75 kcal/kg ^{0,67}	100 kcal/kg ^{0,67}	Reprodução)		
Proteína *	g	83,30	62,50	70,00/75,00		
Arginina*	g	3,30	2,50	2,68/2,78		
Histidina	g	0,87	0,65	0,83		
Isoleucina	g	1,44	1,08	1,35		
Leucina	g	3,40	2,55	3,20		
Lisina *	g	1,13	0,85	2,13		
Metionina*	g	0,57	0,43	1,10		
Metionina + cistina*	g	1,13	0,85	2,20		
Fenilalanina	g	1,33	1	1,25		
Fenilalanina + tirosina*	g	5,11	3,83	4,78		
Treonina	g	1,73	1,30	1,63		
Triptofano	g	0,44	0,33	0,40		
Valina	g	1,70	1,28	1,60		

Recomendação Prática -

5,0 gPB/kg de peso

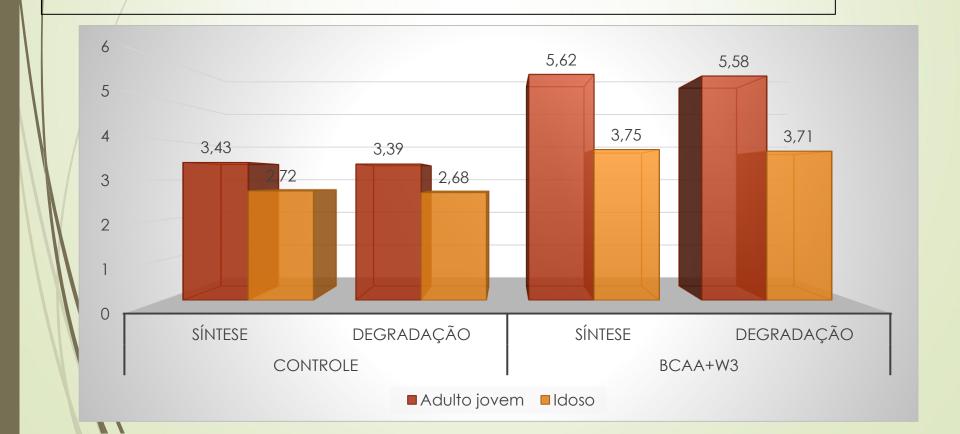
7,9 gPB/kg^{0,67}

105 gPB/1000kcal

RECOMENDAÇÕES FEDIAF CĂES

		Mínimo recomendado					
Nutriente	UNID.	Adulto - consid	lerando NEM de	Crescimento inicial	Crescimento final (14 ≥ Semanas)		
		95 kcal/kg ^{0.75}	110 kcal/kg ^{0.75}	(< 14 Semanas e Reprodução)			
Proteína *	g	52,10	45,00	62,50	50,00		
Arginina*	g	1,51	1,30	2,04	1,84		
Histidina	g	0,67	0,58	0,98	0,63		
Isoleucina	g	1,33	1,15	1,63	1,25		
Leucina	g	2,37	2,05	3,23	2,00		
Lisina *	g	1,22	1,05	2,20	1,75		
Metionina*	g	1,16	1,00	0,88	0,65		
Metionina + cistina*	g	2,21	1,91	1,75	1,33		
Fenilalanina	g	1,56	1,35	1,63	1,25		
Fenilalanina + tirosina*	g	2,58	2,23	3,25	2,50		
Treonina	g	1,51	1,30	2,03	1,60		
Triptofano	g	0,49	0,43	0,58	0,53		
Valina	g	1,71	1,48	1,70	1,40		

Recomendação Prática -


2,5 gPB/kg de peso
5,0 gPB/kg^{0,75}
52,5 gPB/1000kcal

SUPLEMENTAÇÃO DE AMINOÁCIDOS E ÔMEGA-3

Pacheco (2022) -

Beagles (2.3±1.2 vs. 12.7±2.6)

Controle (Co) vs Co+BCAA+w-3

METANÁLISES - HUMANOS

Sarcopenia e ingestão (Santiago et al., 2021)

Características

- 23 estudos
- Espécie: humanos
- n = 17.800 indivíduos
- Sarcopenia vs. normais

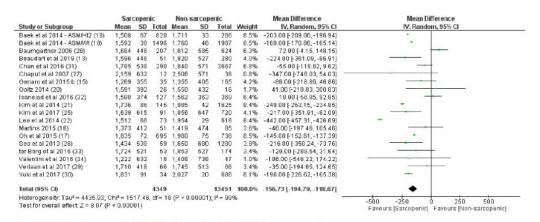


Figure 2 Analysis of energy intake by elderly people with and without sarcopenia.

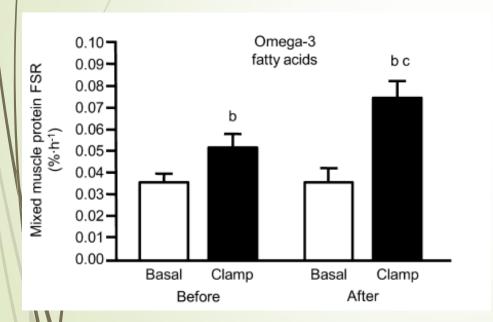
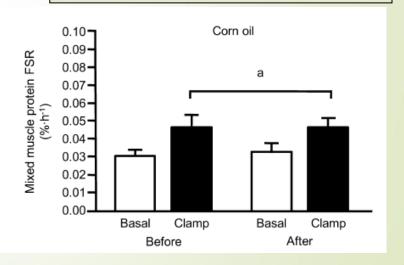

	Sarc	Sarcopenic Non-sarcopenic				nic	Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Beaudart et al 2019 (13)	70	20	51	85	28	280	7.8%	-15.00 [-21.39, -8.61]		
Chaput et al 2007 (27)	89	29	12	115	27	38	1.5%	-26.00 [-44.52, -7.48]		
Genaro et al 2015 a (35)	64	10	35	65	13	70	10.8%	-1.00 [-5.50, 3.50]	-	
Genaro et al 2015 b (15)	64	10	35	66	12	165	12.2%	-2.00 [-5.79, 1.79]	-	
Goltz 2014 (20)	63	18	26	71	23	16	2.7%	-8.00 [-21.22, 5.22]		
Kim et al 2014 (21)	60	3	145	67	2	1625	17.6%	-7.00 [-7.50, -6.50]		
Kim et al 2017 (25)	50	24	91	62	29	720	9.3%	-12.00 [-17.37, -6.63]	-	
Martins 2015 (16)	70	24	51	68	28	85	5.1%	2.00 [-6.88, 10.88]		
Oh et al 2015 (17)	61	3	695	64	3	738	17.6%	-3.00 [-3.31, -2.69]		
ter Borg et al 2016 (33)	68	22	53	74	20	174	7.5%	-6.00 [-12.63, 0.63]		
Valentim et al 2016 (34)	66	36	18	74	69	47	0.8%	-8.00 [-33.80, 17.80]		
Verlaan et al 2017 (29)	73	20	66	75	21	66	7.0%	-2.00 [-9.00, 5.00]		
Total (95% CI)			1278			4024	100.0%	-5.56 [-7.94, -3.18]	•	
Heterogeneity: Tau ² = 8.33	3; Chi ² = 2	209.13	3, df= 1	11 (P < 0.	00001); = 9	5%	101 00 100 00	4 4 4	
Test for overall effect: Z=						****			-50 -25 0 25 50 Favours [sarcopenic] Favours [Non-Sarcopenic]	

Figure 3 Analysis of protein intake by elderly people with and without sarcopenia.

Conclusão: ingestão mais baixa de nutrientes em geral

ÁCIDOS GRAXOS ω-3

Sarcopenia

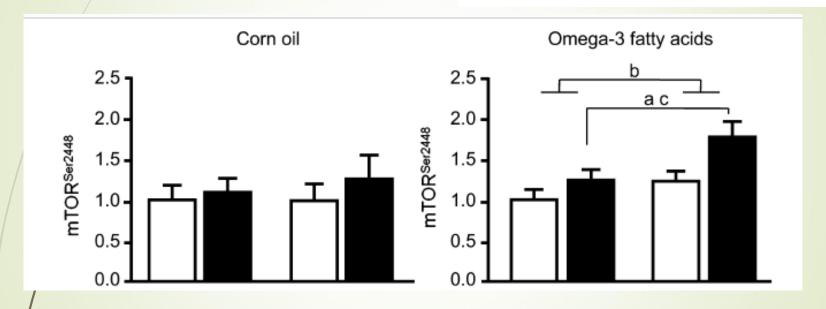


Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial^{1–3}

Gordon I Smith, Philip Atherton, Dominic N Reeds, B Selma Mohammed, Debbie Rankin, Michael J Rennie, and Bettina Mittendorfer

Am. J. Clin. Nutr., 2011

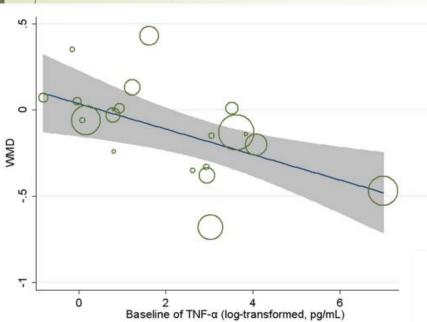
- 16 humanos idosos
- ✓ Oleo de miho ou ômega-3 por 8 sem.
- ✓ Taxa de síntese ptca muscular


Principais achados: Melhorou a Taxa de Sintese proteica muscular

Sarcopenia

Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial^{1–3}

Gordon I Smith, Philip Atherton, Dominic N Reeds, B Selma Mohammed, Debbie Rankin, Michael J Rennie, and Bettina Mittendorfer


Am. J. Clin. Nutr., 2011

Principais achados: Melhorou a Taxa de Sintese proteica muscular

ÁCIDOS GRAXOS ω-3

Meta-análise sobre inflamação

gure 7. Meta-regression for baseline of TNF- α and effect size (n-3 PUFAs supplementation on TNF- α in chi sease). WMD, weighted mean difference. bit0.1317i/journal.pone.0088103.900

Effect of Marine-Derived n-3 Polyunsaturated Fatty Acids on C-Reactive Protein, Interleukin 6 and Tumor Necrosis Factor α : A Meta-Analysis

Kelei Li^{1,2}, Tao Huang^{1,2}, Jusheng Zheng^{1,2}, Kejian Wu^{1,2}, Duo Li^{1,2}*

1 Department of Food Science and Nutrition. Theliann University. Hannyhou, China. 2 ADCMS Centre of Nutrition and Food Safety. Hannyhou, China.

- ✓ 68 estudos com 4604 pessoas
- ✓ Estudos com ômega-3 de peixes/algas

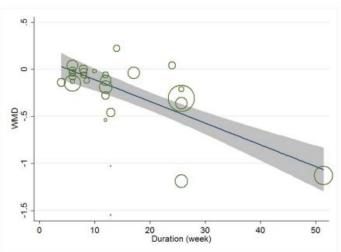


Figure 5. Meta-regression for duration and effect size (n-3 PUFAs supplementation on IL-6 in chronic non-autoimmune disease). WMD, weighted mean difference.

ESTUDOS COM ÁCIDOS GRAXOS

Meta-análise sobre inflamação

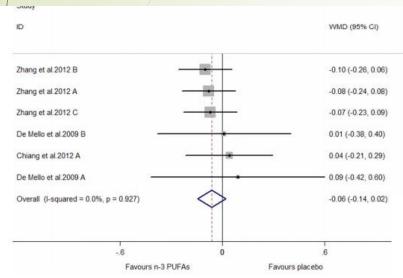


Figure 11. Pooled effect size of n-3 PUFAs from dietary intake on TNF- α in chronic non-autoimmune disease. Under the difference.

doi:10.1371/journal.pone.0088103.g011

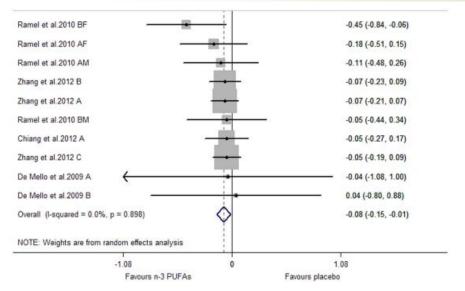
Estes efeitos também foram verificados em saudáveis

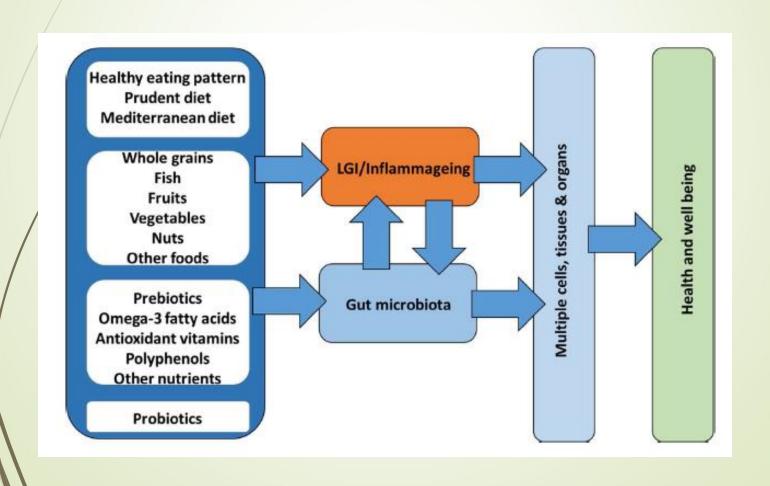
OPEN ACCESS Freely available online

Effect of Marine-Derived n-3 Polyunsaturated Fatty Acids on C-Reactive Protein, Interleukin 6 and Tumor Necrosis Factor α : A Meta-Analysis

Kelei Li^{1,2}, Tao Huang^{1,2}, Jusheng Zheng^{1,2}, Kejian Wu^{1,2}, Duo Li^{1,2}*

1 Department of Food Science and Nutrition, Theilang University, Hangshou, China, 2 APCNS Centre of Nutrition and Food Safety, Hangshou, China




Figure 12. Pooled effect size of n-3 PUFAs from dietary intake on IL-6 in chronic non-autoimmune disease. WMD, weighted mean difference.

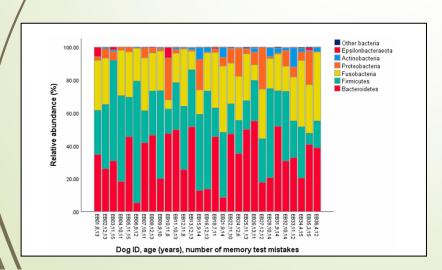
doi:10.1371/journal.pone.0088103.g012

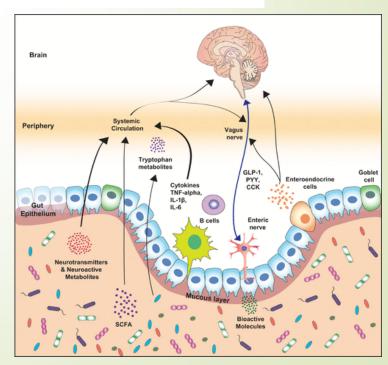
Study

•(Calder et al., 2017)

• Relação entre a microbiota, sistema imune e inflammageing

• Relação entre a microbiota, sistema imune e inflammageing

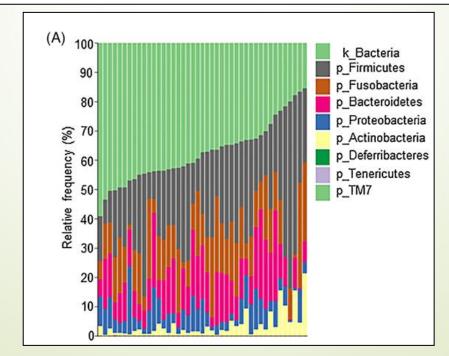



Article

Gut Microbiome Composition is Associated with Age and Memory Performance in Pet Dogs

Eniko Kubinyi ^{1,*,†}, Soufiane Bel Rhali ^{1,2,†}, Sára Sándor ¹, Attila Szabó ² and Tamás Felföldi ²

29 cães de 3-13 anos



43 çães (Mizukami et al., 2019)

Table 1. Results of the age-related analysis of gut microbiome diversity in Shiba Inu dogs.

		Alpha diversity	Beta diversity		
	Faith-PD	Chao1	Shannon	Unweighted UniFrac	Weighted UniFrac
Correlation coefficient	-0.4156	-0.2822	-0.2919	0.2460	0.1003
P-value	0.0056	0.0668	0.0576	0.0020	0.2320

JOURNAL ARTICLE

The effect of age and carbohydrate and protein sources on digestibility, fecal microbiota, fermentation products, fecal IgA, and immunological blood parameters in dogs.

A. P. J. Maria, L. Ayane, T. C. Putarov, B. A. Loureiro, B. P. Neto, M. F. Casagrande, M. O. S. Gomes, M. B. A. Glória, A. C. Carciofi ▼

Journal of Animal Science, Volume 95, Issue 6, June 2017, Pages 2452–2466, https://doi.org/10.2527/jas.2016.1302

Effect of Nutritional Interventions on Longevity of Senior Cats

Carolyn J. Cupp, DVM, MS¹
Clementine Jean-Philippe, DVM, PhD²
Wendell W. Kerr, MS¹
Avinash R. Patil, BVSc, PhD¹
Gerardo Perez-Camargo, PhD, MRCVS²

CONSIDERAÇÕES FINAIS

- Envelhecimento apresenta importantes mudanças fisiológicas e nutricionais
- Ainda são pouco conhecidas as necessidades nutricionais em animais idosos
- Apesar das intervenções nutricionais aparentemente auxiliarem na qualidade de vida de animais senis, poucos estudos suportam estas hipóteses.

